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The picture of ideal gas flow around cones at zero and low angles of attack has been well 
studied by using approximate methods [1], and resul ts  for  high angles of attack have been 
obtained mainly numerical ly  [2-7]. At high angles of attack it is sensible to examine in- 
viscid flow only up to some genera to r  on the downwind side of the cone at which boundary-  
layer  separat ion occurs .  Hence, the domain where the flow can be considered inviscid 
yields the main contribution to the magnitude of the aerodynamic forces  and the heat fluxes 
[5, 9]. A picture of the supersonic flow around a pointed elliptical cone is obtained in this 
paper  by the numerical  solution of the gasdynamics  equations. The whole flow domain is 
computed at low angles of attack while the solution at high angles is obtained in a domain 
bounded by some surface of th ree-d imens ional  type [10]. The dependence of the flow pa-  
r ame te r s  on the angle of attack is studied when the shock is attached to the cone apex. In 
cont ras t  to a c i r cu la r  cone, at low angles of attack two spreading lines occur  on the sur -  
face of an elliptical cone, to which the maximum p r e s s u r e  cor responds .  As the angle of 
attack increases ,  these lines come together  and merge  at a cer ta in  t ime.  At high angles 
of attack the flow picture is analogous to a c i rcu la r  cone with a p r e s su re  maximum in the 
plane of symmet ry .  

1. The nonstat ionary gasdynamics  equations are wri t ten in the var iables  t, n, fi under the assumption 
that the flow is conical just as in [5]. Here t is the time, n is the normalized distance along the normal  to 
the body contour in the c ro s s - s ec t i ona l  plane, and fi is the angle between this normal  and the plane of flow 
symmet ry .  The coordinate I is more  preferable  as compared with the arc  length along the body contour, 
since the domain with large curvature  of the contour, where the gradients  of the flow pa rame te r s  are large,  
is s t re tched in this case .  

The sys tem of equations is always t -hyperbol ic .  Hence, finding the stat ionary conical flow by a t ime 
buildup has an advantage compared to a buildup in the axial coordinate [2], which can only be used when 
the axial veloci W component in the shock layer  is g r ea t e r  than the speed of sound. 

Because of flow symmetry ,  the problem is solved in half the shock layer  domain. The usual sym-  
met ry  boundary conditions at t = O  and ~, impermeabi l i ty  on the body, and the conservat ion condition on 
the shock are  set for  the initial sys tem of equations. In the ease of the "occlusion" mode, [1], when the 
conical supersonic flow is closed on the body and thr shock is in the downwind zone, the domain of the 
solution is bounded by some value flK < 7r. If the ray l = t K  is selected so that its corresponding plane 
fi(x, y, z) =ilK is a surface of three-d imensional  type in physical  space, then no boundary conditions need 
be imposed on it [10]. It should be noted that the "occlusion" mode usually holds at high angles of attack 
when the p re s su re  on the downwind side is low and exer t s  pract ica l ly  no influence on the aerodynamic 
c h a r a c t e r i s t i c s  of the cone [5]. 

The problem is solved numerical ly  by the buildup method, descr ibed in detail in the monograph [11]. 
Formuiat ion of this p rob lem in g rea t e r  detail and its solution are presented in [12]. 

2. The conical flow under considerat ion is symmet r i c  relative to a plane passing through the minor  
axis of the elliptical c ro s s  section. There  is a second plane of flow symmet ry  at a zero  angle of attack which 
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contains the major  axis of the ell ipse.  In this case, two spreadingl ines  
are  located on the cone surface in the second plane of s y m m e t r y  and two 
runoff lines in the f i rs t  plane [13]. A conical s t r eam surface with maxi-  
mum entropy passes  through the plane of symmetry ,  the spreading line, 
and the cone surface.  As the angle of attack increases ,  both spreading 
lines are  displaced along the cone surface on the upwind side and both 
runoff lines remain  in place.  Starting with some angle of attack, the 
spreading lines merge  with the runoff lines in the place of symmetry ,  
and a flow mode with one spreading line f rom the upwind side and one 
runoff line f rom the downwind side is la ter  real ized which is analogous 
to a c i r cu la r  cone. Since it is impossible to predict  beforehand which of 
the two mentioned flow modes wil]~ be realized for  given pa rame te r s ,  a 
computation algori thm was produced which would automatically take into 
account the existence or  absence of a runoff line f rom the upwind side. 

The authors had ea r l i e r  analytically investigated conical flow in 
the neighborhood of a spreading line located on the body surface [12]. It 
was shown that a p r e s su re  maximum and density maximum correspond 
to the minimum of the radial velocity component in a spherical  coordi -  
nate sys tem and that the cone genera tor  along which this holds is a 
spreading line. Moreover,  the conical s t r eam surface is orthogonal to 
the cone surface along the spreading line. 

The flow pa rame te r s  on the runoff lines where a flow singularity 
holds were taken different in the computations for  the approach along 
the plane of symmet ry  and along the body surface,  as in [2]. It was as -  
sumed that for  the approach along the body surface,  the entropy equals 
the entropy on the spreading line whose location has been determined by 
means of the minimum of the radial velocity component (maximum p r e s -  
sure) .  In the case  with one spreading line, the entropy thereon will auto- 
matical ly be unique and therefore ,  the remaining flow pa rame te r s  will 
also be unique. 

The phenomenon of the displacement of the p res su re  maximum 
(the spreading line) with the change in angle of attack admits of a graphic 

interpretat ion f rom the viewpoint of Newtonian theory.  According to this theory,  the p res su re  coefficient 
is a maximum t h e r e  the local angle of attack of the surface is a maximum. Therefore ,  the spreading line 
agrees  with the genera tor  along which the tangent plane to the cone surface makes the maximum angle with 
the f r e e - s t r e a m  velocity vector .  

The local angle of attack ce' is defined as follows: 

sincd = (U~.grad F) 
lu l l  lgrad ~1 

Finding the ex t remum of this function in the pa rame te r  of an ellipse of c ross  section r we obtain 

cos a~ = 2 2 §  h. (2.1) 
a 2  _ b 2  _ tg a, 

where c~ is the angle of attack, a and b are the major  and minor  semiaxes of the ellipse in the section x = 1 
and ~b =arc  tg(a/b)'tgfl). If the express ion  in the right side is g rea te r  than or  equal to one, then ~' is a 
maximum in the plane of flow symmet ry  f rom the upwind side. As the number M~ increases ,  the Newtonian 
conception agrees  all the more  with the numerical  solution of the complete gasdynamics  equations. 

3. Computations of the flow fields of a perfect  gas in the shock layer  of elliptic cones were car r ied  
out. Each variant is charac te r ized  by the rat io between the semiaxes of an ellipse of c ross  section 5=a/b, 
the semiapex angle of the cone in the plane of the major  axis of the ellipse ~a, the angle of attack ~ and the 
f r e e - s t r e a m  Mach number M~. Of considerable interest  is the distribution of the conical Mach number 
M s which is evaluated according to the velocity component orthogonal to the r ad ius -vec to r  drawn to this 
point f rom the cone apex, and the local speed of sound. This Mach number determines the kind of sys tem 
of stationary gasdynamics  equations describing the conical flow, and therefore ,  the region of influence. 
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In [12], the authors ea r l i e r  presented the lines M s =const,  the 
i sobars  and isentropes  (lines of in tersect ion of the conical s t r eam 
surfaces  with the c ros s - sec t iona l  plane) for  6= 1.788, ~ =21.97 ~ Moo = 
6, and various angles of attack. 

The shock standoff distance e=e(w) in the c ros s - sec t iona l  plane 
x = 1 along the normal  to the ellipse contour is presented in Fig. 1. 
Here ~=20  ~ a = 0  ~ 1V~ =7; and w is the mer id ian  angle for  this point 
of the contour,  measured  f rom the plane of s y m m e t r y  f rom the Up- 
wind side. As the minor  semiaxis  of the ellipse b diminishes, the 
gradient along the contour grows near  the major  axis. The shock re -  
cedes f rom the cone surface in the plane of the minor  axis of the 
ellipse and approaches in the plane of the ma jo r  axis. If the shock 
standoff e 0 =e(0) in the plane of the minor  axis is constructed as a 
function of 1/6 (Fig. 2), then as should be expected, e 0 will tend to 
its value in the Mach wave as 1/6-- 0 as the elliptical cone tends to 
a t r iangular  plate. The quantity e l = ~ ( r / 2  ) tends to zero  in this case 
(the solid lines correspond to the interval computed). The dependence 
of e 0 on the angle of a t t acka  is presented in Fig. 3 (,9=20 ~ Moo =7) 
for  different values of 6. The points here cor respond to [2], the t r i -  
angles and squares  to [5], the solid curve for  a t r i a n g u l a r  plate (5=~) 
is taken f rom [14], the c i rc les  are results  of G. P. Voskresenski i ,  
and the Mach wave (a =0). As the angle of attack grows, the quantity 
e 0 diminishes,  passes  through a minimum, and then increases ,  and 
the curves  for  different values of 6 approach each other.  As 6 grows 
the nonmonotonicity becomes more  substantial.  

Values of C'p0, the rat io between the p r e s s u r e  coefficients in the plane of symmet ry  Cp0 and its value 
calculated by Newtonian theory  2 sin2a ' (~ =20 ~ M~ =7), are  presented in Fig. 4. Values of the surface 
local angle of attack a '  are  plotted along the absc issa .  The notation is the same as in Fig. 3, the c ros se s  
cor respond to []4]. Values of the p r e s s u r e  coefficient for  different ellipticities are  close to the Newton- 
theory value in a broad range of angles of attack, with the exception of the domain a '  -< 20 ~ This result  
can be explained f rom the viewpoint of [15]. Taking K~ =tg$c tg  a ' ,  K2=IVI ~ s i n  Cd, as has been done in [1], 
we obtain Kt~0.2 and K2m6 near  a T =60 ~ The relative p re s su re  coefficient cl~ 0 for  these values of K 1 and 
K 2 are pract ica l ly  independent of them. For  a -  < 20 ~ both pa rame te r s  are on the o rde r  of one. 

Distributions of the local p r e s s u r e  coefficient Cp as a function of the meridian angle w are presented 
in Fig. 5 69=20 ~ a =0% Moo =7) for  different ell ipticit ies.  It is seen f rom the graph that the gradient of 
Cp near  the ellipse ma jo r  axis grows as the ellipticity increases ,  and the absolute value of Cp decreases  
everywhere .  As 6--- Oo, the quantity mentioned tends  to zero  in the plane of the minor  axis. The dis tr ibu-  
tion of the p r e s s u r e  coefficient is compared  in Fig. 6 with the experimental  data in [16]: a) 6= 1.788, ~= 
21.97 ~ Moo =6; b) 5=1.788, $=21.97  ~ 1V~ =3.09 and in [17]: 5=2, ~=22.5 ~ Moo =3. The resul ts  of the 
computations agree sa t is factor i ly  with the experimental  resul ts .  

The values of the conical Mach number  M s in Figs.  7 and 8 were taken positive if the velocity com-  
ponent on the cone surface orthogonal to the r ad ius -vec to r  is directed toward increas ing angle w, and neg-  
ative, otherwise.  Therefore ,  M s =0 cor responds  to the spreading and runoff lines on the graphs,  where 
dMs/dw > 0 on the spreading lines and dMs/dw < 0 on the runoff l ines.  At a zero  angle of attack (see Fig. 7), 
the la t ter  holds in the plane of the ell ipse ma jo r  axis and the lat ter ,  in the plane of the minor  axis 65=20 ~ 
Moo =7). As the ellipticity increases ,  the absolute value of M s grows,  and star t ing with some values of 
6 conically supersonic  zones (1Msl > 1) a l ready exist at a zero  angle of attack. 

The displacement  of the spreading line (M s = 0, dMs/dw > 0) as a function of the angle of attack is 
seen well in Fig. 8 (6= 1.788, $=21.97  ~ Moo = 6). For  (~ ~18 ~ the spreading line is shifted into the plane 
of flow s y m m e t r y  where  it remains  as the angle of attack increases  fur ther .  Conically supersonic zones 
appear  at a = 8  ~ [12] in this modification, they reach the body surface (a = 10 ~ as the angle of attack in- 
c reases ,  and then the ."occlusion" mode is real ized.  

The dependence of the angle r corresponding to the spreading line, on the angle of attack is p r e -  
sented in Fig. 9 for  this same cone. A flow mode with one spreading line cor responds  to angles of attack 
lying to the right of the point of in tersect ion of the curve and the horizontal axis. Results obtained by 
means of (2.1) are  superposed by dashes on this graph. 
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Formula  (2.1) yields a graphical  representa t ion  of the influence of the elliptic cone pa rame te r s  and 
the angle of attack on the posit ion of the spreading line. As 5 increases  for  fixed a, the coordinate } = 
a sin r of the spreading point in the plane of the cone c ross  section increases ,  i.e., the point reaches  f rom 
the plane of flow symmet ry .  Equating the right side to one, we obtain the value of the angle a* for which 
the spreading Hne is shifted into the plane of symmet ry :  

a 2 __ b 2 

tg cr -- b (a2 + t)" 

It hence follows that the angle a* increases  as the cone flattens more  along the minor  axis. The e r r o r  in 
determining a* accord ing  to this theory apparently grows with the approach to zero.  In the other limit 
case when the cone becomes  more  c i r cu l a r  (b-~a), this formula  yields the exact result  a* ~ 0 .  

The dependence of the total flow Maeh number  MII on the cone surface is presented for  Moo = 7, ~ = 10 ~ 
in Fig. 10 for  c~=0. The Mach number  at this point is a minimum, as in the case of a c i r cu la r  cone [6]. 
Starting with some angle of attack, MII becomes  less  than one. This solution is valid only for  an infinite 
cone or  for  the neighborhood of the nose in the case of a finite cone. As the angle of attack increases  
fur ther ,  MII becomes  negative, which cor responds  to a change in the flow direction: the s t r eam on the 
upwind genera tor  s tar ts  to flow to the nose. An analogous phenomenon for  a narrow t r iangular  plate was 
f i r s t  detected by Chernyi [18], and in [6] for  a c i r cu la r  cone. It is seen f rom the graph that as 5 increases  
with the remaining p a r a m e t e r s  kept fixed, the angles of attack of the passage through Mri = 1.0 and MII = 0 
grow. This is related to the diminution in the local  angle of attack as the cone becomes flat ter .  
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